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SUMMARY

We introduce a mass-flux-based inlet boundary condition for the lattice-Boltzmann method. The proposed
boundary condition requires minimal amount of boundary data, it produces a steady-state velocity field
which is accurate close to the inlet even for arbitrary inlet geometries, and yet it is simple to implement.
We demonstrate its capability for both simple and complex inlet geometries by numerical experiments.
For simple inlet geometries, we show that the boundary condition provides very accurate inlet velocities
when Re�1. Even with moderate Reynolds number, the inlet velocities are accurate for practical purposes.
Furthermore, the potential of our boundary condition to produce inlet velocities which convincingly adapt
to complex inlet geometries is highlighted with two specific examples. Copyright q 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

It is argued that the lattice-Boltzmann method (LBM) is amenable for simulations in complex
geometries [1, 2]. Typically such geometries are encountered in simulations of flow in porous
media or suspension flows [3, 4]. Many pipe and vessel systems also comprise complex geometries
for fluid flow simulations [5–10]. Our work to develop a new inlet boundary condition is motivated
by flow simulations in vascular systems. Such systems can be highly complicated—in particular
tumour vascular systems. Blood flow velocity in normal tissues is well known to be correlated with
the vessel caliber [11, 12]; this correlation is lost in tumour vessels due to a substantial reduction of
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Figure 1. Segment of a tumour vascular system obtained with computed
microtomography: scanning resolution is 3.6�m.

structural organization caused by the abnormal vascular development in the tumour. Our ultimate
aim is to investigate the flow characteristics of a range of tumour microvascular systems by
simulating flows within high-resolution microcomputed tomography data sets of vascular corrosion
casts. The dimensionless numbers in the simulations are matched with those determined by the
literature values for blood flow at a similar scale. The literature provides following values: kinematic
viscosity 5.48×10−6m2/s [13], inlet blood flow velocity 1.0×10−3m/s [14], and the characteristic
length scales (mean vessel diameter) 20–40�m. Together these situate the dimensionless Reynolds
number for this flow regime between 3.65×10−3 and 7.3×10−3.

The tumour vascular systems of our interest have single inlet vessel branching into smaller
ones and thus have multiple outlet vessels. Figure 1 shows an example of such a system obtained
with computed microtomography. At the inlets and outlets cross sections of the vessels can have
arbitrary shapes, and the orientation of the vessels is nonuniform. This type of configuration is
challenging, especially for inlet and outlet boundary conditions. First of all, the boundary data
available, a priori, are typically very limited. For example, pressure boundary condition would
require the definition of pressure difference between the single inlet and each of the outlets [15, 16].
In most cases, the pressure difference data for each outlet are difficult, if not impossible, to define
or the pressure field can even be one of the desired results from the simulation.

Alternatively, one could apply velocity boundary conditions at the boundaries of the computa-
tional domain [4, 15–18]. Since the inlet vessel can have an arbitrary shape, setting an analytical
velocity profile is not feasible: at best some approximation scheme could be devised. Often a
uniform velocity profile is set for such inlets. A sophisticated approximation scheme for a velocity
profile at the inlet is devised in Reference [19] by Freitas and Schröder. They assign a parabolic
inflow profile based on the normal wall distances of the tracheal cross section. Furthermore, the
shape of the inflow profile is oriented normal to the cross section. For the outlets, the velocity data
are typically considered not available. So-called free-flow outlet boundary conditions are appealing,
since they require no data for the boundaries [15, 20, 21]. However, the free-flow boundary condi-
tions currently available are not completely understood and may produce velocity fields at the
outlets which are unphysical—in particular if the outgoing vessels do not align with the faces
of the computational domain. In spite of the known limitations, we choose to apply a free-flow
boundary condition for the outlet in our numerical experiments.

Here our focus is on the inlet boundary condition. In essence, we introduce a scheme where
a given average velocity is enforced at the inlet. The approach taken here leads to an expression
for the inlet density (pressure) after which, and with some fundamental assumptions, local inlet
velocities are readily available in LBM. Thus, the proposed inlet scheme can be categorized as a

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:638–650
DOI: 10.1002/fld



640 K. MATTILA ET AL.

Dirichlet-type boundary condition. The novelty of this scheme is that the inlet density and local inlet
velocities are free to evolve in time—only the average velocity is fixed. This relates our scheme to
free-flow and open boundary conditions common in computational fluid dynamics. Finally, the time
evolution will converge to a steady-state where the computed inlet velocity profile very accurately
conforms to the inlet geometry and thereby, e.g. to analytical solutions if available. Two practical
aspects motivate the use of our inlet scheme: there is no need to prescribe an inlet velocity profile
(i.e. local velocities at the inlet) nor pressure differences between inlet and outlets—making it an
attractive boundary condition candidate for simulations in complex vessel geometries.

We begin with a brief introduction to LBM. In Section 3 we introduce our scheme for the inlet.
In Section 4, we demonstrate its capability to produce very accurate simulation results. A further
discussion on the results is presented in Section 5. Finally, a summary is presented.

2. LATTICE-BOLTZMANN METHOD

In the standard LBM, the computational domain is discretized with a uniform lattice. We follow
the convention, and apply LBM with dimensionless units, in which the uniform lattice spacing and
discrete time step are set to unity, i.e. �x=1 and �t=1. Thus, the lattice velocity c=�x/�t=1.
Let

L=[0,nx −1]×[0,ny−1]×[0,nz−1]⊂N3

denote the lattice with nx , ny , and nz the number of lattice nodes in each spatial direction. Thus,
the lattice nodes have integer coordinates: r=(x, y, z)∈L. Lattice nodes are assigned as solid
or fluid nodes according to the geometry. The time evolution of the fluid in LBM comprises of
repeated streaming and collision steps. In the former step, fictitious fluid particles are streamed to
the neighbouring lattice nodes, while in the latter one, collisions among the particles are modelled.
We adopt a convention where, at each time step, streaming operation precedes collision. In a time
step t , the instant after streaming operation but before collision is denoted by t�.

The dynamic variables in LBM are distribution functions f (r, t,ci )=: fi (r, t), i=0, . . . ,b−1.
The distribution values describe the probability of finding, at an instant t , a (fictitious) particle at
site r with velocity ci . In other words, at every lattice node there is one distribution value associated
with each velocity vector ci . The number of velocity vectors representing the discrete velocity
space is model dependent. In standard models, the vectors ci serve as exact links between the
neighbouring lattice nodes. We introduce our inlet boundary scheme by using the D3Q19 model,
which has b=19 discrete velocities, or so-called links [22]. However, our inlet scheme is general
and can be used with other models.

We apply the so-called incompressible version (ILBM) of the D3Q19 model [23]. In ILBM,
density is decomposed into constant and fluctuating part: �=�0+��. The essence of the model
is to neglect all the terms proportional to ��(u) and ��(u)2, which are of the order of O(Ma3)
or higher; u is the macroscopic fluid velocity. Here Mach number Ma is the ratio between the
fluid velocity and the speed of sound. In particular, the above-mentioned terms are neglected in
the equilibrium distribution after expanding the expression for the fluctuating density. When the
procedure described is applied to the standard equilibrium function, we obtain

f eqi (�,u)=wi

(
�+�0

[
(ci ·u)

c2s
+ (ci ·u)2

2c4s
− u2

2c2s

])
(1)
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where cs =1/
√
3 is the speed of sound. The value of the weight factor wi depends on the length

of the vector ci such that the discrete velocities having lengths 0, 1, and
√
2 are associated with

weight factor values 1
3 ,

1
18 and 1

36 , respectively. The hydrodynamic variables, as well as the non-
hydrodynamic ones, are the moments of the distribution functions in the velocity space. The basic
hydrodynamic variables, the mass density � and the momentum density �u, are calculated from
the zeroth and first moments:

�(r, t)=∑
i
fi (r, t)

�(r, t)u(r, t)=∑
i
ci fi (r, t)

However, in ILBM the momentum density is redefined as

�0u(r, t)=∑
i
ci fi (r, t)

In this work, a two-relaxation-time (TRT) scheme is utilized: the relaxation time �e is for
tuning the viscosity and �o is chosen so as to minimize the viscosity-dependence of the slip
velocity [24]. Let index −i denote such a link that ci =−c−i . TRT can be conveniently formulated
by using concepts of symmetric (even) f̂i =( fi + f−i )/2 and anti-symmetric (odd) f̃i =( fi − f−i )/2
functions. Most important properties of these functions are fi = f̂i + f̃i , f̂i = f̂−i , and f̃i =− f̃−i .
Symmetric and anti-symmetric notations are applied also for equilibrium f eqi and non-equilibrium
f neqi = fi − f eqi functions. Even and odd moments of symmetric and anti-symmetric functions
vanish, respectively. The lattice-Boltzmann equation for TRT is

fi (r+ci , t+1)= fi (r, t)−�e f̂
neq
i (r, t)−�o f̃

neq
i (r, t) (2)

where �e=1/�e. Viscosity-dependence is minimized by choosing �o=8(2−�e)/(8−�e) [24].

3. MASS-FLUX-BASED INLET BOUNDARY CONDITION

In what follows, we assume that there is a single inlet and it locates completely on one face of
the computational domain, say y=0. Let �in refer to a set including all the fluid lattice nodes at
the inlet, N f to the number of nodes in this set, and n is the unit inward normal of the inlet face.
We continue by stating the fundamental assumption for our scheme: at the inlet, the correct flow
field is unidirectional and perpendicular to the inlet boundary. More precisely, we assume an inlet
flow in the y-direction: in the direction of the inward normal. This implies that for a reasonable
distance from the inlet, the geometry remains constant in the flow direction.

Let I denote an index set enumerating the discrete velocities for the D3Q19 model. At the inlet,
D3Q19 model has five links pointing out of the computational domain and five links pointing
towards the domain. For convenience, we denote these outbound and inbound links with index
sets Iout and Iin, respectively. After the streaming step all the distribution values, except those
associated with the inbound links, are known at the inlet. The task of the inlet boundary condition
is to deduce the distribution values for the inbound links. Let Ikn= I \ Iin include the indices of the
links for which the distribution values are known at the inlet after the streaming step. Furthermore,
we denote with M(t�) the total mass related to the inlet nodes after the streaming step. The total
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mass M(t�) is not completely determined due to the unknown distribution values related to the
inbound links at the inlet. The total mass related to the known distribution values at the inlet is

Mkn(t
�)= ∑

r∈�in

�x3
∑
i∈Ikn

fi (r, t�)= ∑
r∈�in

�x3�kn(r, t
�)= ∑

r∈�in

mkn(r, t�) (3)

where �kn(r, t
�) is the local density related to the known distribution values after the streaming

step.
Additionally, we assume

ci ·n=−c, i ∈ Iout and ci ·n=c, i ∈ Iin

All standard lattice-Boltzmann models, e.g. D2Q9, D3Q19, and D3Q27, fulfil this condition. The
above assumption is made only to simplify the following notation. Now the local outgoing mass
flux for the inlet nodes, after the streaming step, is

qout(r, t�)=− ∑
i∈Iout

(ci ·n) fi (r, t�)=c
∑

i∈Iout
fi (r, t�)=c ·�out(r, t�)=c ·mout(r, t�)

�x3
, r∈�in (4)

The units for mass flux are mass per unit area per unit time—that is, the units of momentum
density. The minus sign in front of the first sum is because we prefer to define qout as a positive
value: the outbound links have negative y component due to our choice of inlet boundary (y=0).
Furthermore, the outgoing mass flow rate over the inlet boundary is

Qout(t
�)= ∑

r∈�in

�x2qout(r, t�)= Mout(t�)

�t
(5)

Our inlet scheme operates with a single parameter ū y which is the average velocity at the inlet.
We utilize this information to deduce the target mass flow rate Q= Ain�0ū y over the inlet, where
Ain=N f ·�x2. Note, that we have utilized the definition of momentum density given by ILBM,
and that here Q is not dependent on time. The mass flow rate Q is also the difference between
the incoming (unknown) and outgoing mass flow rates (known): Q=Qin−Qout. This gives an
equation for the unknown incoming mass flow rate:

Qin(t
�)= Min(t�)

�t
:=Q+Qout(t

�) (6)

We apply our definition for the incoming mass flow rate, Equation (6), to determine the total mass
related to the inlet nodes after the streaming step:

M(t�) :=Mkn(t
�)+Min(t

�) (7)

Our next endeavour is to formulate an expression for the unknown local incoming mass flux
qin(r, t�)=c ·�in(r, t�). As already described above, we restrict to a simple case: at the inlet, the
correct flow field is assumed unidirectional (y-direction) and perpendicular to the inlet boundary.
Owing to the assumption of zero flow in the plane of the inlet, there are no pressure gradients
and therefore no density gradients in the plane directions. This implies a common density �c
for all inlet nodes. The common density is defined as the average density for the inlet nodes:
�c(t

�) :=M(t�)/(N f ·�x3). This implies that locally the condition �c(t
�)=�in(r, t

�)+�kn(r, t
�)
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must be satisfied, which gives the expression

�in(r, t
�) :=�c(t

�)−�kn(r, t
�) (8)

enabling the computation of local incoming mass flux qin(r, t�). From the local mass fluxes we
deduce, in accordance with ILBM, the local flow velocities:

�0uy(r, t�) :=qin(r, t�)−qout(r, t�), r∈�in (9)

Now we address the question how to assign a value for the unknown distribution functions at
the inlet. There are a number of ways to determine the unknown distribution values from the above
expressions for the basic hydrodynamic variables. Typically velocity boundary conditions require
at least the local flow velocities, which are now available. We promote a simple procedure which
is easy to implement. At the inlet, the equilibrium parts of the unknown distribution values can
be evaluated with the hydrodynamic variables ��

c ≡�c(t
�) and u�

y ≡uy(r, t�). The non-equilibrium
parts for the unknown distribution values are approximated from the values associated with the
outbound links. That is, we compute

f neq−i (r, t�)= f−i (r, t�)− f eq−i (�
�
c, (0,u

�
y,0)), r∈�in (10)

and set f neqi (r, t�) := f neq−i (r, t�) in accordance with the first-order Chapman–Enskog expansion
[24]. This finally completes the expression for the unknown distribution functions:

fi (r, t�) := f eqi (��
c, (0,u

�
y,0))+ f neq−i (r, t�), i ∈ Iin, r∈�in (11)

Our inlet boundary condition does not depend on any particular choice of relaxation scheme or
no-slip boundary condition for the solid–fluid interface; they can be chosen independently. Figure 2
is a summary of our inlet scheme.

Figure 2. Summary of the proposed inlet boundary condition.
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4. NUMERICAL EXPERIMENTS

Here we demonstrate, numerically, the capabilities of the inlet scheme introduced in the previous
section. First, we apply our scheme to flows in simple geometries, where analytical solutions
are available. Then we proceed to more complex geometries representing some of the difficul-
ties encountered in real simulations. For simplicity, we use geometries that are constant in the
y-direction over the whole computational domain. That is, cross sections parallel to the inlet
boundary are identical. At the solid–fluid interface, we apply the halfway bounce-back boundary
condition [25, 26], i.e. the solid–fluid interfaces are located exactly halfway between adjacent
lattice nodes. Furthermore, a scheme presented in Reference [21] is utilized at the outlet. In
the analysis, we assess the non-local error of the simulated velocity using a relative L2 norm
defined as

L2=
√∑

(uy−Uy)2√∑
(Uy)2

(12)

where uy(r, t) denotes the simulated velocity and Uy(r, t) is the analytical solution.

4.1. Simple geometries with analytical solutions

To begin with, we compare the simulation results in simple geometries against the analytical
solutions. Two configurations are selected: a channel flow, i.e. flow between two plates, and a pipe
flow. In the former, the computational domain is confined in the z-direction by channel walls and
periodic boundary conditions are applied in the x-direction. The inlet is at y=0 and a y-directional
flow is considered. The analytical steady-state velocity profile for the channel flow is

Uy(z)=Umax

(
1−

(
z−cz
h

)2
)

where integer cz =(nz+1)/2 is the z coordinate of the centerline, h=nz/2 is half of the channel
height, and Umax= 3

2 ū y is the maximum velocity. For the pipe flow, the analytical steady-state
velocity profile is

Uy(d)=Umax

(
1−

(
d

R

)2
)

where d(x, z)=√(cx −x)2+(cz−z)2 is the distance from the centerline, R=D/2 is the pipe
radius, and Umax=2ū y .

First, the effect of simulation parameters on the simulated velocity is considered. To this end,
viscosity is varied by selecting five values for the relaxation time: �e∈{0.6,0.75,1.0,1.5,2.0}.
Furthermore, the value of average velocity ū y ranges from 0.00001 to 0.05. For all parameter
values and for both channel and pipe flows, the L2 norm at the inlet is plotted as a function of
Reynolds number and shown in Figure 3. The definition for the Reynolds number is

Re= Lūy

�
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Figure 3. L2 norms plotted as functions of Reynolds number at the channel inlets (left) and at the pipe
inlets (right). Setups 1 and 3 are used for channel flows whereas setups 1 and 2 are used for pipe flows

(see Table I). Value of the average velocity is between 0.00001 and 0.05.

Table I. Simulation setups for channel and pipe flows.

Channel Pipe

Setup nx ny nz Time steps ny D cx cz Time steps

1 3 51 11 10000 51 11 6 6 10000
2 3 153 33 30000 153 33 17 17 30000
3 3 255 55 50000 255 55 28 28 50000
4 3 459 99 100000 357 77 39 39 70000

where L is the channel height or pipe diameter, and � is the kinematic viscosity. In Figure 3,
simulation setups 1 and 3 are used for the channel flow whereas setups 1 and 2 are used for the
pipe flow (see Table I). Figure 3 reveals that error at the inlet, assessed by Equation (12), is almost
independent of both relaxation time and average velocity when Re�1. The exact value for the
Reynolds number after which L2 norm diverges depends on the discretization.

The spatial convergence of error for the inlet scheme in a channel and pipe flow is determined
using the simulation setups defined in Table I; the converge rate at the inlet is approximately of
second and first order for the channel and pipe flow, respectively (see Figure 4). These results
agree with the convergence rates presented in the literature for LBM with the halfway bounce-back
boundary condition (see Reference [27] and references therein). Thus, the inlet scheme does not
degrade the spatial convergence rate of LBM. Moreover, the convergence rate does not depend
on relaxation time nor average velocity as long as the Reynolds number in these measurements
remains below one.
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Figure 5. Relative error of the simulated velocity at the inlet of the channel.
Setup 2 is used with relaxation time �e =1.0.

Figure 5 presents the relative error of the simulated velocity at the inlet of the channel. Here
setup 2 is used with relaxation time �e=1.0. The relative error is calculated locally as

uerr(z)= Uy(z)−uy(z)

Uy(z)
(13)

The relative error increases when average velocity, and thus Reynolds number, is increased. The
relative error is largest close to the channel walls. However, the relative error remains below one
percent even for ū y =0.01 (Re=1.98).
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Figure 6. Two inlet geometries: a cross section of an abnormal vessel (left)
and a row of intersecting circles (right).
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Figure 7. On the left, the local relative error calculated at the inlet with Equation (14) is presented for
the vessel geometry in logarithmic scale. The projected velocity profile at the inlet for row of intersecting

circles is presented at the right.

4.2. Complex inlet geometries

In the following our aim is to demonstrate that the present inlet scheme is capable of producing
velocity profiles which convincingly adapt to the complex inlet geometries—without a priori
information about the local inlet velocity values nor about the pressure gradients for the
system.

For this purpose we have selected two inlet geometries: a cross section of an abnormal vessel
in a tumour vascular system and a row of intersecting circles (cf. Figure 6). The staircase pattern
of geometries, evident in Figure 6, is inherent when the halfway bounce-back boundary condition
is utilized. More elaborate boundary conditions would dramatically smooth out the solid–fluid
interfaces perpendicular to the inlet [28–30]. However, here we concentrate on the inlet boundary
condition and settle for the halfway bounce-back boundary condition at the solid–fluid interfaces.
In these complex geometries, flows are simulated with �e=1.0 and ū y =0.0001. Simulations are
run until a steady state is reached. We assess the simulated inlet velocity profile by comparing it
with the velocity profile obtained from the halfway in flow direction (i.e. from the cross section
at y=ny/2). That is, we compute the local relative error by using the velocities from the halfway
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as a reference:

uerr(x, z)=
∣∣∣∣∣ury(x, z)−uy(x, z)

ury(x, z)

∣∣∣∣∣ (14)

where the vertical bars denote the absolute value and ur is the reference velocity from the halfway.
In Figure 7, the relative error at the inlet is presented for the vessel geometry in a logarithmic

scale. Length of the domain in the flow direction, ny =151, is chosen so that the error norm (14)
is meaningful. The error is largest close to the solid boundaries where it has a magnitude of the
order of one percent. In the bulk of the fluid domain, the relative error is two to three orders of
magnitude smaller. The projected velocity profile at the inlet for the row of intersecting circles
is presented in Figure 7. It is yet an another demonstration that the inlet scheme is capable of
producing a velocity field that conforms to the geometry and is accurate even at the inlet.

5. DISCUSSION

Comparison of simulated velocity profiles against analytical solutions reveal a very good agreement.
However, divergence of the relative L2 error norm value occurs when Re�1. Origin of the
divergence is currently unknown, but one might suspect that it is related to the approximation
chosen for the non-equilibrium parts of the unknown distribution functions which does not take into
account the high-order corrections. If the divergence turns out to emerge from the non-equilibrium
approximation, a more elaborate approximation will improve the accuracy of flow simulations with
higher Reynolds number.

Be that as it may, in practice our scheme is not limited to simulations where Re�1. First of
all, the mass flow rate remains correct at the inlet despite of errors in local velocities. Second,
errors in local velocities are small for practical purposes even with moderate Reynolds number
(1�Re�100). This is evident from Figure 5 and especially from Table II where relative error of
maximum velocity is given for three channel flow simulations. Setup 3 is used, �e=0.6, and average
inlet velocity is varied. Relative error of maximum velocity is computed with Equation (13) at the
inlet and in the middle of the flow domain. When Re=82.5, the error at the inlet is approximately
4%—a small number in many applications. As a final argument, by presenting errors computed
directly at the inlet, we give the most critical view on the proposed inlet scheme. Errors computed

Table II. Relative error of the maximum velocity in
channel flow simulations.

Relative error of umax

Re Inlet Middle

0.0165 0.000168 0.000164
1.65 0.000314 0.000163
82.5 0.0408 0.00479

Setup 3 is used with �e=0.6: value of the average inlet
velocity varies. Errors are computed at the inlet and in the
middle of the flow domain.
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inside the flow domain are smaller. This is also apparent from Table II. Relative error of the
maximum velocity in the middle of the flow domain is less than 5 per mil for the largest Reynolds
number.

We give the last remark prior to the summary: the inlet density and local inlet velocities evolve
in time before converging to the steady-state values. During time evolution, we observe clear
oscillations specifically in density (pressure) field. Oscillations are largest at the beginning of the
simulations and are presumably amplified by poor initial conditions.

6. SUMMARY

We have presented a mass-flux-based inlet scheme for lattice-Boltzmann flow simulations. It
requires minimal amount of boundary data, namely the average velocity at the inlet. By comparing
the simulated velocities against analytical solutions in simple geometries, we have shown that our
scheme produces results that are accurate at the inlet. Furthermore, the analysis of the results in
simple geometries reveals that the error is related to the Reynolds number. The error in simulated
velocity is almost independent of relaxation time and average velocity if Re�1. The exact value
of Reynolds number after which the error diverges is dependent on discretization. However, even
with moderate Reynolds number, the error remains reasonable for many practical applications.

In addition, simulations in geometries obtained from a cross section of a vessel and from a row
of intersecting circles further demonstrate the capability of our scheme to produce velocity profiles
at the inlet which faithfully conform to the complex geometries. In addition, from a practical point
of view, our inlet scheme has the desirable property that, since the average velocity is assigned,
the Reynolds number value for the simulation is obtained by simply measuring the characteristic
length scale at the inlet. Our future endeavours include modification of the inlet scheme presented
here, to flows which are not unidirectional at the inlet, i.e. for flows in inclined channels and pipes.
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